

#### WEST BENGAL STATE UNIVERSITY

B.Sc. Programme 5th Semester Examination, 2022-23

#### MTMGDSE01T-MATHEMATICS (DSE1)

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

## Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:

 $2 \times 5 = 10$ 

1+1

- (a) Is the set of vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are linearly dependent? Justify your answer.
- (b) What is the geometric meaning of the given transformation

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- (c) Is any straight line passing through (0, 0, 0) in  $\mathbb{R}^3$  a sub space of  $\mathbb{R}^3$ ? Give reason.
- (d) Write down the matrix form of the system of equations

$$a_1x + b_1y + c_1z = d_1$$
  
 $a_2x + b_2y + c_2z = d_2$   
 $a_3x + b_3y + c_3z = d_3$ 

- (e) Is the vectors (1, 2) and (-1, 2) and linearly independent in  $\mathbb{R}^3$ ? Justify.
- (f) Find the inverse of the matrix  $\begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}$ .
- (g) For what values of k the three vectors (1, 2, 2), (k, 1, 2) and (2, 2, 1) are linearly independent?
- (h) Write the standard basis of  $\mathbb{R}^2$  and  $\mathbb{R}^3$ .
- (i) Prove that  $S = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$  is a subspace of  $\mathbb{R}^3$ .
- 2. (a) If u and v are linearly independent vectors in a vector space V then show that so are u + v and u v.
- 2

(b) Examine whether the set of vectors are linearly independent in  $\mathbb{R}^3$ .

4

$$\{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}.$$

(c) Define Dilation and Rotation.

2

## CBCS/B.Sc./Programme/5th Sem./MTMGDSE01T/2022-23

- 3. (a) Let A be a singular matrix. Is 0 is an eigen value of A? Justify your answer.
- 4
- (b) If  $\lambda$  be an eigen value of a non-singular matrix  $\Lambda$ , then  $\lambda^{-1}$  is an eigen value of  $\Lambda^{-1}$ .
- 4. (a) Define Eigen space and invariant space with examples.
- 2+2

(b) Show that the matrix  $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$  is not diagonalisable.

- 4
- 5. (a) Define a basis of a vector space. Do the vectors (1, 0, 0), (0, 1, 0) and (1, 2, 1) are form a basis of  $\mathbb{R}^3$ ? Justify.
- 4
- (b) Find the eigen values and corresponding eigen vectors of the following real matrix.
- 4

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

- 6. (a) Prove or disprove: The set  $\{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0 \text{ and } a^2 + b^2 + c^2 \neq 0\}$  is a subspace of  $\mathbb{R}^3$ .
- 3

(b) Use elementary row operations on A to obtain  $A^{-1}$  where

5

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 3 & 0 \\ 6 & 4 & 1 \end{bmatrix}$$

7. (a) Let  $A = \begin{bmatrix} 3 & 2 & -6 \\ 0 & -1 & 4 \\ 5 & -2 & 0 \end{bmatrix}$ . Verify that A + A' is symmetric and A - A' is skew-

4

symmetric and hence express A as the sum of a symmetric and skew-symmetric matrix.

(b) If  $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ , then verify that A satisfies its own characteristic equation.

4

Hence find  $A^{-1}$  and  $A^{9}$ .

8. (a) Find a basis of  $\mathbb{R}^3$  containing the vectors (1, 1, 0) and (1, 1, 1).

3

(b) Let A, B, C be three square matrices such that  $A \neq O$  and AB = AC, where O is the null matrix. Does it imply B = C? Justify your answer.

3

(c) Define dimension of a finite dimensional vector space V over the field F. Give example.

2

# CBCS/B.Sc./Programme/5th Scm./MTMGDSE01T/2022-23

- 9. (a) Find the 3 by 3 matrix representations of the following transformations.
- 2+2

- (i) projection of any point on the x-y plane.
- (ii) reflection of any point through the x-y plane.
- (b) Determine the rank of  $A = \begin{pmatrix} x & 1 & 0 \\ 3 & x-2 & 1 \\ 3(x+1) & 0 & x+1 \end{pmatrix}$ , for different values of x.
- 10.(a) Solve by matrix method:

4

$$x+y+z=4,$$

$$2x - y + 3z = 1,$$

$$3x + 2y - z = 1.$$

(b) Reduce the matrix to fully reduced normal form

4

$$\begin{pmatrix}
1 & 0 & 2 & 3 \\
2 & 0 & 4 & 6 \\
3 & 0 & 7 & 2
\end{pmatrix}$$

